PAS studies applied for evaluation of neutron and hydrogen treated reactor steels

V. Slugen*, S. Pecko, T. Brodziansky, S. Sojak, V. Krsjak, M. Petriska, J. Simeg Veternikova, and M. Saro

*Institute of Nuclear and Physical Engineering, Slovak University of Technology, Ilkovičova 3, 81219 Bratislava, Slovakia

*email: Vladimir.slugenr@stuba.sk

The safe operation of nuclear facilities is limited by neutron embrittlement of most loaded parts. Nuclear materials degradation caused by radiation exposure can be experimentally measured with difficulties connected to high radiation and manipulation. Based on long term experiences we focused also on experimental simulation of irradiation via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program as well as Slovak surveillance specimen program (1995-2015). Actually eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsmaterialkraftwerk Kahl) in the 1980s. One of the specimens which was in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40 %) were observed in “as-received” steels. A significant increase in the size of the induced defects due to neutron damage was observed in the irradiated specimens resulting in 2-3 vacancies. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to the implantation of hydrogen ions with energies of 100 keV (up to the depth <500 nm). Actual results from German reactor steels were compared to previous experiences with Russian and Japan reactor steels studied after different loads.