CONTROLLED POROSITY OF MCM-41 OBTAINED BY PARTIAL BLOCKING OF PORES BY SILICONE OIL

Marek Gorgol1,2, Patrycja Krasucka2, Jacek Goworek2, Radoslaw Zaleski1
1Institute of Physics, Department of Nuclear Methods, Maria Curie-Sklodowska University, pl. Maria Curie-Sklodowskiej 1, 20-031 Lublin, Poland;
2Faculty of Chemistry, Department of Adsorption, Maria Curie-Sklodowska University, pl. Maria Curie-Sklodowskiej 3, 20-031 Lublin, Poland
*Corresponding author: marek.gorgol@poczta.umcs.lublin.pl

MOTIVATION The Extended Tao-Eldrup (ETE) model describes the relation between the lifetime of ortho-positronium (o-Ps) and the pore size. It is applicable in the approximate range of 0.2-50 nm. This model is widely used for characterization of porous materials by means of positron annihilation spectroscopy (PALS). Development of the ETE model progresses in various ways. One of them is a search for more comprehensive relations between PALS parameters (i.e. the lifetime and intensity of positron related o-Ps components) and a pore size distribution to obtain universal porosimetric method.

The main inconvenience of positron porosimetry is lack of the absolute calibration of the o-Ps model in various pores. To achieve this, a series of model materials with precisely controlled porosity is required. This is not easy to prepare samples of the same material differentiated in respect to precise pore dimensions control. The popular model material is MCM-41, which pores are long, unconnected cylinders of uniform size. However, tailoring the pore size and specific surface of MCM-41 in the wide range, which is required for the calibration, is impossible at the synthesis stage.

The method of controlling the porosity of MCM-41 by partial blocking of pores with silicon oil is proposed. The silicon oil cannot be removed by pumping at room temperature due to its large molecular mass. This allows to carry out PALS measurements in high vacuum, which is required to apply the ETE model.

EXPERIMENTAL

• MCM-41 silica material was soaked with acetone/silicone DC550 oil mixture with different concentration of DC550 oil (5%, 10%, 20%, v/v%). Wet samples were left for conditioning for 5 h at room temperature, next all samples were dried at 60 °C for 5 h to evaporate the acetone. MCM-41 samples reached 23%, 41%, and 58% (v/v%) DC550 oil content, respectively.

• Low temperature nitrogen adsorption/desorption measurements were carried out with a volumetric adsorption analyzer ASAP 2400 (Micromeretics, Norcross, USA). The specific surface area, \(S_{\text{BET}}\), was calculated from the BET equation in the relative pressure range from 0.05 to 0.25. The pore size distributions (PSDs) were obtained using the Barrett-Joyner-Halenda (BJH) procedure, whereas the total pore volume, \(V_p\), was estimated from a single adsorption point at the relative pressure of 0.985.

• PALS measurements: BaF\(_2\) scintillators were used in standard fast-slow delayed coincidence spectrometer. The time range of time-to-amplitude converter was 2 ps. FWHM of the resolution curve was about 290 ps (+5% of 440 ps). Each sample was kept in vacuum (p < 10\(^{-6}\) Pa), obtained with the use of turbomolecular pump. The total count number for each sample was about 1.7×10\(^{10}\). The spectra were analyzed with the use of the PALSfit3.

MCM-41

PALS

The rate of o-Ps migration from the primary mesopores to interparticle spaces \((k)\) and the intensity ratio of o-Ps in interparticle spaces to the total o-Ps in pores \((I(k)/I(0))\), as a function of the mass of DC550 introduced to MCM-41.

SUMMARY

• The porosity parameters \(S_{\text{BET}}\) and \(V_p\) are decreasing with increasing content of DC550, what indicates that the silicone oil is a good wetting agent for MCM-41 silica.

• The position of the peak in PSD remains unchanged despite the increasing DC550 content. It testifies that DC550 forms plugs in the pores, i.e. it completely fills whole clearance of pore at certain length instead of making it narrower.

• DC550 mostly blocks the primary pores (preferably their entrances), but part of it can locate also in the interparticle spaces.

• The calibration curve, linking o-Ps intensity (corresponding to annihilation in the primary pores) and pore volume, was proposed.

• Comparison of o-Ps migration rate the intensity ratio of o-Ps in interparticle spaces to the total o-Ps in pores, confirms the presence of both: closed and open pores in MCM-41 modified by DC550 oil. This requires the correction in the calibration curve.