Study the linear polarization of the positron and positronium by using the J-PET detector

Muhsin Mohammed
On behalf of the J-PET collaboration
Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland

E-mail: muhsin.mi@doctoral.uj.edu.pl

Abstract

A method for measuring the linear (vector) polarization of positron and positronium (Ps) atom is proposed which is based on the determination of the angular distribution of the normal to the decay plane with respect to the o-Ps spin orientation. The unique geometry and properties of the J-PET enables to design the positron source such that the polarization of produced o-Ps can be determined. Due to the parity violation in the beta decay the emitted positrons are longitudinally polarized with the average polarization equal to $P = v/c$ where v denotes the positron velocity and c is the speed of light.

1. Introduction

The J-PET is a novel tomography device using plastic Scintillator instead of conventional crystal. It can be used to study the Ps polarization, where the linear polarization depends on the positron source's absorber and the initial polarization of the produced positrons [1, 2]. Also we can study the degree of the o-Ps polarization which may be monitored based on the measurement of the angular distribution between the normal to the 3y decay plane and the o-Ps spin direction, where a decay plane is defined as a plane containing momenta of photons from the o-Ps to 3y decay. The distribution of the angle θ between the spin direction of o-Ps and a normal to the decay plane is proportional to the term $(1+\cos^2\theta)$ for $m = 0$, and proportional to the term $(1-\cos^2\theta)$ for $m = 1$ [3, 4]. Therefore, J-PET can be used to determine the degree of the linear polarization by the comparison of the angular distribution of the normal to the decay plane with respect to the direction of the Ps spin.

2. The large annihilation chamber

In the Rm-3 measurements the large annihilation chamber and a sodium source with activity 9.14 MBq, closed in the kapton foil inside cylindrical aluminium chamber was used (see Fig. 1).

3. The Jagiellonian-PET scanner

The J-PET is the first positron emission tomography scanner based on organic scintillators (see Fig. 2), which can describe as an axially symmetric and high acceptance geometry with unique properties and very high angular resolution, where $\sin\theta = 0.03$ for 4x for the 1st layer's strips of J-PET, which can be used for tests of discrete symmetry in decays of o-Ps in addition to the medical imaging.

4. Determining the normal to the o-Ps decay plane and the spin direction

We can determine the orientation of the normal (n) of the o-Ps decay plane from the 3 hit points, 2 vectors will lie completely in the same plane, and the vector product of any two non-parallel vectors on the plane will give the normal (n) (See Fig. 3).

5. Producing a highly polarized positrons

The previous studies [6] show that it is possible to achieve positrons polarization as high as $P = 0.69$ with reduced intensity by selectively absorbing source positrons which are emitted at low energies and large angles relative to the normal to the source. The beam polarization is independent of moderator atomic number (Z), but depends on the Z-number of the absorber. (see Fig. 4 and Fig. 5) [6].

Summary

The presented reconstruction methods can be used with J-PET detector to determine the o-Ps linear polarization with high precision, it can be used also in the tests of the CP and CPT symmetries.

Bibliography